Search results

Search for "tetracyanoquinodimethane (TCNQ)" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • patients received a full medical examination identical to the previously described procedures [11]. The breath profile was registered using point-contact sensor matrices based on tetracyanoquinodimethane (TCNQ) compounds [34] in accordance with the method we developed and verified in our earlier medical
PDF
Album
Full Research Paper
Published 28 Oct 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • unoccupied molecular orbital (LUMO) of tetracyanoquinodimethane (TCNQ) molecules is significantly narrower than on the bare substrate and that it is accompanied by a characteristic satellite structure. Employing simple calculations within the Franck–Condon model, we reveal their vibronic origin and identify
  • the modes with strong electron–phonon coupling. Keywords: decoupling layer; molybdenum disulfide (MoS2); scanning tunneling microscopy, tetracyanoquinodimethane (TCNQ); vibronic states; Introduction When molecules are adsorbed on metal surfaces, their electronic states are strongly perturbed by
  • explore this potential for MoS2 on a Ag(111) surface. In agreement with the band modifications of WS2 on Au(111) and Ag(111), we find that the bandgap remains almost the same, albeit shifted to lower energies [33]. As a test molecule we chose tetracyanoquinodimethane (TCNQ). Due to its electron-accepting
PDF
Album
Full Research Paper
Published 20 Jul 2020

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • constituents of CT crystals thus form a specific subset. We name a few examples. On the Au(111) surface, ordered monolayers were observed for following donor/acceptor pairs: tetrathiafulvalene (TTF)/7,7,8,8-tetracyanoquinodimethane (TCNQ) [11][12], tetramethyltetrathiafulvalene (TMTTF)/TCNQ [13], α
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • tetracyanoquinodimethane (TCNQ) [5][6]. At interfaces between different organic materials interesting physical phenomena appear, in most cases due to (partial) charge transfer between the materials. One example is the formation of a two-dimensional metallic interface between insulating organic crystals [7][8]. Other
PDF
Album
Full Research Paper
Published 06 Oct 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • Abstract We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton
  • resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K. Keywords: co-deposition; molecular spintronics; organic thin films; phthalocyanines; tetracyanoquinodimethane (TCNQ); Introduction Controlling the structure of molecular thin films is of great interest for
  • signals that could occur from the substrate. (a) Manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) molecules. (b) Annealing procedure applied to the blended thin films prepared by OMBD. (c) Well-ordered β-MnPc film after annealing. Optical micrographs for molecular thin films grown on
PDF
Album
Full Research Paper
Published 14 Jul 2017
Other Beilstein-Institut Open Science Activities